Learning Visual Shape Lexicon for Document Image Content Recognition

نویسندگان

  • Guangyu Zhu
  • Xiaodong Yu
  • Yi Li
  • David S. Doermann
چکیده

Developing effective content recognition methods for diverse imagery continues to challenge computer vision researchers. We present a new approach for document image content categorization using a lexicon of shape features. Each lexical word corresponds to a scale and rotation invariant shape feature that is generic enough to be detected repeatably and segmentation free. We learn a concise, structurally indexed shape lexicon from training by clustering and partitioning feature types through graph cuts. We demonstrate our approach on two challenging document image content recognition problems: 1) The classification of 4, 500 Web images crawled from Google Image Search into three content categories — pure image, image with text, and document image, and 2) Language identification of 8 languages (Arabic, Chinese, English, Hindi, Japanese, Korean, Russian, and Thai) on a 1, 512 complex document image database composed of mixed machine printed text and handwriting. Our approach is capable to handle high intra-class variability and shows results that exceed other state-of-the-art approaches, allowing it to be used as a content recognizer in image indexing and retrieval systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

یک روش دو مرحلهای برای بازشناسی کلمات دستنوشته فارسی به کمک بلوکبندی تطبیقی گرادیان تصویر

This paper presented a two step method for offline handwritten Farsi word recognition. In first step, in order to improve the recognition accuracy and speed, an algorithm proposed for initial eliminating lexicon entries unlikely to match the input image. For lexicon reduction, the words of lexicon are clustered using ISOCLUS and Hierarchal clustering algorithm. Clustering is based on the featur...

متن کامل

Exploiting Multimedia Content: a Machine Learning Based Approach

This thesis explores use of machine learning for multimedia content management involving single/multiple features, modalities and concepts. We introduce shape based feature for binary patterns and apply it for recognition and retrieval application in single and multiple feature based architecture. The multiple feature based recognition and retrieval frameworks are based on the theory of multipl...

متن کامل

Arabic word descriptor for handwritten word indexing and lexicon reduction

Word recognition systems use a lexicon to guide the recognition process in order to improve the recognition rate. However, as the lexicon grows, the computation time increases. In this paper, we present the Arabic word descriptor (AWD) for Arabic word shape indexing and lexicon reduction in handwritten documents. It is formed in two stages. First, the structural descriptor (SD) is computed for ...

متن کامل

Learning Document Image Features With SqueezeNet Convolutional Neural Network

The classification of various document images is considered an important step towards building a modern digital library or office automation system. Convolutional Neural Network (CNN) classifiers trained with backpropagation are considered to be the current state of the art model for this task. However, there are two major drawbacks for these classifiers: the huge computational power demand for...

متن کامل

Transcript mapping for historic handwritten document images

There is a large number of scanned historical documents that need to be indexed for archival and retrieval purposes. A visual word spotting scheme that would serve these purposes is a challenging task even when the transcription of the document image is available. We propose a framework for mapping each word in the transcript to the associated word image in the document. Coarse word mapping bas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008